
A Survey of Control-Flow Obfuscations

Anirban Majumdar, Clark Thomborson, and Stephen Drape

Secure Systems Group
Department of Computer Science, The University of Auckland,

Auckland, New Zealand, Private Bag 92019
{anirban,cthombor,stephen}@cs.auckland.ac.nz

Abstract. In this short survey, we provide an overview of obfuscation
and then shift our focus to outlining various non-trivial control-flow ob-
fuscation techniques. Along the way, we highlight two transforms having
provable security properties: the dispatcher model and opaque predicates.
We comment on the strength and weaknesses of these transforms and
outline difficulties associated in generating generalised classes of these.

1 Introduction

The motivation for research in obfuscation stems from the problem of software
piracy. An obfuscating transform attempts to manipulate code in such a way that
it becomes unintelligible to automated program analysis tools used by malicious
reverse engineers. It works by performing semantic preserving transformations
which aim to increase the difficulty of automatically extracting computational
logic out of the code. Depending on the size of software and the complexity of
transforms, a human adversary may also find the obfuscated code difficult to
comprehend; however, this is not a mandatory requirement.

The first formal definition of obfuscation was given by Collberg et al. [1,2].
They defined an obfuscator in terms of a semantic-preserving transformation
function T which maps a program P to a program P ′ such that if P fails to
terminate or terminates with an error, then P ′ may or may not terminate. Oth-
erwise, P ′ must terminate and produce the same output as P . Collberg et al.
classified obfuscating transforms into three useful categories:

– Layout obfuscation: Changes or removes useful information from the inter-
mediate language code or source code, e.g. removing debugging information,
comments, and scrambling/renaming identifiers.

– Data obfuscation: Targets data and data structures contained in the pro-
gram, e.g. changing data encoding, variable and array splitting and merging.

– Control-flow obfuscation: Alters the flow of control within the code, e.g.
reordering statements, methods, loops and hiding the actual control flow
behind irrelevant conditional statements.

This paper focuses on the latter category since the first two have been extensively
investigated before [1,3].

A. Bagchi and V. Atluri (Eds.): ICISS 2006, LNCS 4332, pp. 353–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

354 A. Majumdar, C. Thomborson, and S. Drape

2 The Dynamic Dispatcher Model

Wang et al. [4] and Chow et al. [5] made the first commendable attempt to
lay theoretical foundations for control-flow obfuscations of sequential programs.
The theoretical basis in Wang et al.’s technique is the NP-complete argument of
determining precise indirect branch target addresses of dispatchers in the pres-
ence of aliased pointers. Chow et al., on the other hand, uses PSPACE-complete
argument of determining the reachability of a flattened program dispatcher.
Control-flow flattening makes all basic blocks appear to have the same set of
predecessors and successors. The actual control-flow during execution is deter-
mined dynamically by a dispatcher. Thus, the dispatcher module is the most
important component in the flattened (obfuscated) program. In Wang’s tech-
nique, each flattened basic block while exiting, changes the dispatcher variable
through complicated pointer manipulation on some global data structure. Chow
et al.’s technique, on the other hand, views the dispatcher as a deterministic finite
automaton that determines the overall control-flow of the obfuscated flattened
program from a state space of given transitions. However, if the state space is
rather small, it will not be difficult to deobfuscate the dispatcher. For this reason,
its authors expand the state space by incorporating numerous dummy states.

Since we do not have an average-case hard instance generator for either
NP-complete or PSPACE-complete problems, these theoretical foundations are
still incomplete. However even in their current state, these models provide some
“fuzzy” confidence in the security of the real-world obfuscation systems they
describe. Eventually we would hope to prove security results for some models of
obfuscation. Then the only real-world attacks would be to subvert the assump-
tions of these models, analogous to how a provably-secure cryptographic system
can never be “cracked”, but may still be subverted e.g. by “social engineering”
methods of password discovery.

3 Opaque Predicates

An opaque predicate is a conditional expression whose value is known to the
obfuscator, but is difficult for an adversary to deduce statically. A predicate Φ is
defined to be opaque at a certain program point p if its outcome is only known
at obfuscation time. Following Collberg et al. [2], we write ΦF

p (ΦT
p) if predicate

Φ always evaluates to False (True) at program point p for all runs of the same
program. We call such predicates Opaquely True (False) at program point p. The
opaqueness property is necessary for guaranteeing the resilience of control-flow
transformations.

Algebraic predicates have invariants that are based on well-known mathemat-
ical axioms [6]. A predicate of this class is Φ : [(x(x + 1)%2 == 0], which is
opaquely true for all integers. To an adversary having previous knowledge about
the embedding of algebraic predicates in the program, static analysis attack over
the obfuscated code will simply be reduced to code pattern matching. Opaquely
non-deterministic predicates are based on some function parameter selected at

A Survey of Control-Flow Obfuscations 355

random [6]. The stealthiness of these predicates will be increased greatly if their
random integers are drawn from a probability distribution which resembles the
values of integer constants typically observed in programs.

Collberg et al. [1] used the intractability property of pointer aliasing to con-
struct aliased opaque predicates. Their construction is based on the fact that it
is impossible for approximate and imprecise static analysers to detect all aliases
all of the time [7]. The basic idea is to construct a dynamic data structure and
maintain a set of pointers on this structure. Opaque predicates can then be de-
signed using these pointers and their outcome can be statically determined only
if precise inter-procedural alias analysis can be performed on this complicated
data structure. Collberg et al.’s definition of the resilience of an opaque predicate
does not take into account dynamic analysis attacks. If an attacker can monitor
the heap, registers, etc. during execution, then it may be revealed that a given
predicate always evaluates to true or false.

Palsberg et al. [8] observed that in order to protect against a dynamic debug-
ging attack, the obfuscator needs to avoid a predicate from evaluating to the
same result. They proposed using dynamically opaque predicates, which are a
family of correlated predicates which all evaluate to the same result in any given
run, but in different runs they may evaluate to different results. It is an open
problem to construct correlated dynamic opaque predicates and will be part of
our future research. These predicates could have the following structure:

if (Φ1) S1 ;
if (¬Φ2) S′

1 ;

where S1 and S′
1 are variant versions of the same code block which are difficult

to merge. A possible attack for this transformation is to prove that S1 ≡ S′
1 and

Φ1 ⇔ Φ2. If this is the case, then this obfuscated structure may be replaced by
S1 under certain conditions (such as S1 does not change the value of ¬Φ2).

In [9], Majumdar and Thomborson suggested creating temporally unstable
opaque predicates in a distributed environment of concurrently executing mobile
agents from respective copies of aliased data structure values. A temporally un-
stable opaque predicate can be evaluated at multiple times at different program
points during a single program execution such that the values observed to be
taken by this predicate are not identical. There are a couple of advantages of mak-
ing opaque predicates temporally unstable. The first one concerns its reusability;
one predicate can be reused multiple times to obfuscate different control flows.
Secondly, they are also resilient against static analysis attacks since their values
depend on dynamically changing message communication patterns between par-
ticipating agents. In addition to their resilience against static analysis attacks,
temporally unstable opaque predicates are also difficult to attack by dynamic
monitoring. For mounting a dynamic attack, the authors assumed an adversary
capable of monitoring local states of individual agents through some malicious
sniffer agent. Even in this adversarial model, it was argued, using the results
of Chase and Garg [10], that constructing a global state from these partially
observed agent local states is a computationally intractable problem.

356 A. Majumdar, C. Thomborson, and S. Drape

4 Discussion and Future Work

In this brief survey, we highlighted the dispatcher model and opaque predicates
for control-flow obfuscation. We also noted that obfuscatory strength cannot be
guaranteed, in part because it is not known how to arbitrarily generate hard
problem instances. Furthermore, the techniques which use hard complexity re-
sults as their theoretical basis are “wrong-way” reductions, from a complexity-
theoretic perspective. These reductions explain why we should not expect to
have exact static analysis tools that will work on all programs, however they
do not prove the hardness of deobfuscating any specific output of any specific
obfuscation system. Even so, an obfuscation system will have great practical
importance if it resists all known attacks for at least as long as it would take to
replace an obfuscated program by a differently-obfuscated program.

References

1. Collberg, C., Thomborson, C., and Low, D.: A Taxonomy of Obfuscating Trans-
formations. Technical Report#148. 36 pp. Department of Computer Science, The
University of Auckland, New Zealand. 1997.

2. Collberg, C., Thomborson, C., and Low, D.: Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In Proceedings of 1998 ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’98). Pages 184-196.
1998.

3. Drape, S.: Obfuscation of Abstract Data Types. DPhil thesis. Computing Labora-
tory. Oxford University. England. 2004.

4. Wang, C., Hill, J., Knight, J.C., and Davidson, J.W.: Protection of software-based
survivability mechanisms. In Proceedings of the 2001 conference on Dependable
Systems and Networks. IEEE Computer Society. Pages 193-202. 2001.

5. Chow, S., Gu, Y., Johnson, H., and Zakharov, V.A.: An Approach to the Obfus-
cation of Control-Flow of Sequential Computer Programs. In the proceedings of
4th International Conference on Information Security, LNCS Volume 2200. Pages
144-155. Springer-Verlag. Malaga, Spain. 2001.

6. Venkatraj, A.: Program Obfuscation. MS Thesis. Department of Computer Science,
University of Arizona. 2003.

7. Horwitz, S.: Precise Flow-insensitive may-alias in NP-hard. In ACM Transactions
on Programming Languages and Systems (TOPLAS), Vol. 19 No. 1. Pages 1-6.
1997.

8. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., and Zhang, Y.: Expe-
rience with software watermarking. In Proceedings of 16th IEEE Annual Computer
Security Applications Conference (ACSAC’00). IEEE Press. p308. New Orleans,
LA, USA. 2000.

9. Majumdar, A. and Thomborson, C.: Manufacturing Opaque Predicates in Dis-
tributed Systems for Code Obfuscation. In Proceedings of the 29th Australasian
Computer Science Conference (ACSC’06). Pages 187-196. ACM Digital Library.
Hobart, Australia. 2006.

10. Chase, C. and Garg, V.K.: Detection of global predicates: Techniques and their
limitations. In the Journal of Distributed Computing, Volume 11, Issue 4. Pages
191-201. Springer-Verlag. 1995.

	Introduction
	The Dynamic Dispatcher Model
	Opaque Predicates
	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

